
Lecture 27

Numerical Differentiation

Approximating derivatives from data

Suppose that a variable y depends on another variable x, i.e. y = f(x), but we only know the values of f at
a finite set of points, e.g., as data from an experiment or a simulation:

(x1, y1), (x2, y2), . . . , (xn, yn).

Suppose then that we need information about the derivative of f(x). One obvious idea would be to approx-
imate f ′(xi) by the Forward Difference

f ′(xi) = y′i ≈
yi+1 − yi
xi+1 − xi

.

This formula follows directly from the definition of the derivative in calculus. An alternative would be to
use a Backward Difference

f ′(xi) ≈
yi − yi−1
xi − xi−1

.

Since the errors for the forward difference and backward difference tend to have opposite signs, it would
seem likely that averaging the two methods would give a better result than either alone. If the points are
evenly spaced, i.e. xi+1 − xi = xi − xi−1 = h, then averaging the forward and backward differences leads to
a symmetric expression called the Central Difference

f ′(xi) = y′i ≈
yi+1 − yi−1

2h
.

Errors of approximation

We can use Taylor polynomials to derive the accuracy of the forward, backward and central difference
formulas. For example the usual form of the Taylor polynomial with remainder (sometimes called Taylor’s
Theorem) is

f(x+ h) = f(x) + hf ′(x) +
h2

2
f ′′(c) ,

where c is some (unknown) number between x and x+h. Letting x = xi, x+h = xi+1 and solving for f ′(xi)
leads to

f ′(xi) =
f(xi+1)− f(xi)

h
− h

2
f ′′(c).
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Figure 27.1: The three difference approximations of y′i.

Notice that the quotient in this equation is exactly the forward difference formula. Thus the error of the
forward difference is −(h/2)f ′′(c) which means it is O(h). Replacing h in the above calculation by −h gives
the error for the backward difference formula; it is also O(h). For the central difference, the error can be
found from the third degree Taylor polynomials with remainder

f(xi+1) = f(xi + h) = f(xi) + hf ′(xi) +
h2

2
f ′′(xi) +

h3

3!
f ′′′(c1) and

f(xi−1) = f(xi − h) = f(xi)− hf ′(xi) +
h2

2
f ′′(xi)−

h3

3!
f ′′′(c2) ,

where xi ≤ c1 ≤ xi+1 and xi−1 ≤ c2 ≤ xi. Subtracting these two equations and solving for f ′(xi) leads to

f ′(xi) =
f(xi+1)− f(xi−1)

2h
− h2

3!

f ′′′(c1) + f ′′′(c2)

2
.

This shows that the error for the central difference formula is O(h2). Thus, central differences are significantly
better and so: It is best to use central differences whenever possible.

There are also central difference formulas for higher order derivatives. These all have error of order O(h2):

f ′′(xi) = y′′i ≈
yi+1 − 2yi + yi−1

h2
,

f ′′′(xi) = y′′′i ≈
1

2h3
[yi+2 − 2yi+1 + 2yi−1 − yi−2] , and

f (4)(xi) = y
(4)
i ≈ 1

h4
[yi+2 − 4yi+1 + 6yi − 4yi−1 + yi−2] .
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Partial Derivatives

Suppose u = u(x, y) is a function of two variables that we only know at grid points (xi, yj). We will use the
notation

ui,j = u(xi, yj)

frequently throughout the rest of the lectures. We can suppose that the grid points are evenly spaced, with
an increment of h in the x direction and k in the y direction. The central difference formulas for the partial
derivatives would be

ux(xi, yj) ≈
1

2h
(ui+1,j − ui−1,j) and

uy(xi, yj) ≈
1

2k
(ui,j+1 − ui,j−1) .

The second partial derivatives are

uxx(xi, yj) ≈
1

h2
(ui+1,j − 2ui,j + ui−1,j) and

uyy(xi, yj) ≈
1

k2
(ui,j+1 − 2ui,j + ui,j−1) ,

and the mixed partial derivative is

uxy(xi, yj) ≈
1

4hk
(ui+1,j+1 − ui+1,j−1 − ui−1,j+1 + ui−1,j−1) .

Caution: Notice that we have indexed uij so that as a matrix each row represents the values of u at a
certain xi and each column contains values at yj . The arrangement in the matrix does not coincide with the
usual orientation of the xy-plane.

Let’s consider an example. Let the values of u at (xi, yj) be recorded in the matrix

(uij) =


5.1 6.5 7.5 8.1 8.4
5.5 6.8 7.8 8.3 8.9
5.5 6.9 9.0 8.4 9.1
5.4 9.6 9.1 8.6 9.4

 (27.1)

Assume the indices begin at 1, i is the index for rows and j the index for columns. Suppose that h = .5 and
k = .2. Then uy(x2, y4) would be approximated by the central difference

uy(x2, y4) ≈ u2,5 − u2,3
2k

≈ 8.9− 7.8

2 · 0.2
= 2.75.

The partial derivative uxy(x2, y4) is approximated by

uxy(x2, y4) ≈ u3,5 − u3,3 − u1,5 + u1,3
4hk

≈ 9.1− 9.0− 8.4 + 7.5

4 · .5 · .2
= −2.
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Exercises

27.1 Suppose you are given the data in the following table.
t 0 .5 1.0 1.5 2.0
y 0 .19 .26 .29 .31

a. Give the forward, backward and central difference approximations of f ′(1).
b. Give the central difference approximations for f ′′(1), f ′′′(1) and f (4)(1).

27.2 Suppose values of u(x, y) at points (xi, yj) are given in the matrix (27.1). Suppose that h = .1 and
k = .5. Approximate the following derivatives by central differences:
a. ux(x2, y4)
b. uxx(x3, y2)
c. uyy(x3, y2)
d. uxy(x2, y3)


