Lecture 37

Implicit Methods

The Implicit Difference Equations

By approximating u_{xx} and u_t at t_{j+1} rather than t_j, and using a backwards difference for u_t, the equation $u_t = cu_{xx}$ is approximated by

$$
\frac{u_{i,j+1} - u_{i,j}}{k} = \frac{c}{h^2}(u_{i-1,j+1} - 2u_{i,j+1} + u_{i+1,j+1}).
$$

Note that all the terms have index $j + 1$ except one and isolating this term leads to

$$
u_{i,j} = -ru_{i-1,j+1} + (1 + 2r)u_{i,j+1} - ru_{i+1,j+1} \quad \text{for} \quad 1 \leq i \leq m - 1,
$$

(37.1)

where $r = ck/h^2$ as before. The entries involved in (37.1) are illustrated in Figure 37.1.

Now we have u_j given in terms of u_{j+1}. This seems like a problem, since u_{j+1} is the solution at a later time than u_j, so we could never know u_{j+1} before we knew u_j. However, the relationship between u_{j+1} and u_j is linear. Using matrix notation, we have

$$
u_j = Bu_{j+1} - rb_{j+1},
$$

where b_{j+1} represents the boundary condition. Thus to find u_{j+1} from u_j, we need only solve the linear system

$$
Bu_{j+1} = u_j + rb_{j+1},
$$

(37.2)

where u_j and b_{j+1} are given and

$$
B = \begin{pmatrix}
1 + 2r & -r \\
-r & 1 + 2r & -r \\
& \ddots & \ddots \\
& -r & 1 + 2r & -r \\
& -r & 1 & 1 + 2r
\end{pmatrix}.
$$

(37.3)

Using this scheme is called the implicit method since u_{j+1} is defined implicitly. Since we have to solve a linear system at each step, the implicit is more work per step than the explicit method.

Since we are solving (37.2), the most important quantity is the maximum absolute eigenvalue of B^{-1}, which is 1 divided by the smallest eigenvalue of B. Figure 37.2 shows the maximum absolute eigenvalues of B^{-1} as a function of r for various size matrices. Notice that this absolute maximum is always less than 1. Thus errors are always diminished over time and so this method is always stable. For the same reason it is also always as accurate as the individual steps.
Figure 37.1: The value at grid point \((i, j)\) depends on its future value and the future values of its nearest neighbors.

Figure 37.2: Maximum absolute eigenvalue as a function of \(r\) for the matrix \(B^{-1}\) from the implicit method for the heat equation calculated for matrices \(B\) of sizes \(m = 2 \ldots 10\). Whenever the maximum absolute eigenvalue is less than 1 the method is stable, i.e. it is always stable.
Both this implicit method and the explicit method in the previous lecture make $O(h^2)$ error in approximating u_{xx} and $O(k)$ error in approximating u_t, so they have total error $O(h^2 + k)$. Thus although the stability condition allows the implicit method to use arbitrarily large k, to maintain accuracy we still need $k \sim h^2$.

Crank-Nicholson Method

Now that we have two different methods for solving parabolic equation, it is natural to ask, “can we improve by taking an average of the two methods?” The answer is yes.

We implement a weighted average of the two methods by considering an average of the approximations of u_{xx} at j and $j + 1$. This leads to the equations

$$\frac{u_{i, j + 1} - u_{i, j}}{k} = \frac{\lambda c}{h^2} (u_{i-1, j+1} - 2u_{i, j+1} + u_{i+1, j+1}) + \frac{(1 - \lambda) c}{h^2} (u_{i-1, j} - 2u_{i, j} + u_{i+1, j}).$$

(37.4)

The implicit method contained in these equations is called the **Crank-Nicholson method**. Gathering terms yields the equations

$$-r\lambda u_{i-1, j+1} + (1 + 2r\lambda)u_{i, j+1} - r\lambda u_{i+1, j+1} = r(1 - \lambda)u_{i-1, j} + (1 - 2r(1 - \lambda))u_{i, j} + r(1 - \lambda)u_{i+1, j}.$$

In matrix notation this is

$$B_\lambda \mathbf{u}_{j+1} = A_\lambda \mathbf{u}_j + r \mathbf{b}_{j+1},$$

where

$$A_\lambda = \begin{pmatrix}
1 - 2(1 - \lambda)r & (1 - \lambda)r & (1 - \lambda)r \\
(1 - \lambda)r & 1 - 2(1 - \lambda)r & (1 - \lambda)r \\
\vdots & \vdots & \ddots \\
(1 - \lambda)r & 1 - 2(1 - \lambda)r & (1 - \lambda)r \\
(1 - \lambda)r & 1 - 2(1 - \lambda)r & 1 - 2(1 - \lambda)r
\end{pmatrix},$$

and

$$B_\lambda = \begin{pmatrix}
1 + 2r\lambda & -r\lambda & -r\lambda \\
-r\lambda & 1 + 2r\lambda & -r\lambda \\
\vdots & \vdots & \ddots \\
-r\lambda & 1 + 2r\lambda & -r\lambda \\
-r\lambda & 1 + 2r\lambda
\end{pmatrix}.$$
do even better if we also require
\[r = \frac{\sqrt{5}}{10} \approx 0.22361, \]
and, consequently,
\[\lambda = \frac{3 - \sqrt{5}}{6} \approx 0.12732. \]

With these choices, the method has truncation error of order $O(h^6)$, which is absolutely amazing.

To appreciate the implications, suppose that we need to solve a problem with 4 significant digits. If we use the explicit or implicit method alone then we will need $h^2 \approx k \approx 10^{-4}$. If $L = 1$ and $T \approx 1$, then we need $m \approx 100$ and $n \approx 10,000$. Thus we would have a total of 1,000,000 grid points, almost all on the interior. This is a lot.

Next suppose we solve the same problem using the optimal Crank-Nicholson method. We would need $h^6 \approx 10^{-4}$ which would require us to take $m \approx 4.64$, so we would take $m = 5$ and have $h = 1/5$. For k we need $k = (\sqrt{5}/10)h^2/c$. If $c = 1$, this gives $k = \sqrt{5}/250 \approx 0.0089442$ so we would need $n \approx 112$ to get $T \approx 1$. This gives us a total of 560 interior grid points, or, a factor of 1785 fewer than the explicit or implicit method alone.

Exercises

37.1 Modify the program `myexpmatrix` from exercise 36.2 into a function program `myimpmatrix` that produces the matrix B in (37.3) for given inputs m and r. Modify your script from exercise 36.2 to use B^{-1} for $m = 4$ and to plot for $r \in [0, 2]$. It should produce a graph similar to that in Figure [37.2] for $m = 4$. Turn in the programs and the plot.