Lecture 4

Controlling Error and Conditional Statements

Measuring error and the Residual

If we are trying to find a numerical solution of an equation f(x) = 0, then there are a few different ways we
can measure the error of our approximation. The most direct way to measure the error would be as

{Error at step n} = e, =z, —a*

where x,, is the n-th approximation and z* is the true value. However, we usually do not know the value of
z*, or we wouldn’t be trying to approximate it. This makes it impossible to know the error directly, and so
we must be more clever.

One possible strategy, that often works, is to run a program until the approximation z,, stops changing.
The problem with this is that it sometimes doesn’t work. Just because the program stop changing does not
necessarily mean that x,, is close to the true solution.

For Newton’s method we have the following principle: At each step the number of significant digits
roughly doubles. While this is an important statement about the error (since it means Newton’s method
converges really quickly), it is somewhat hard to use in a program.

Rather than measure how close x,, is to «*, in this and many other situations it is much more practical to
measure how close the equation is to being satisfied, in other words, how close y, = f(z,) is to 0. We will
use the quantity r, = f(z,) — 0, called the residual, in many different situations. Most of the time we only
care about the size of r,,, so we use the absolute value of the residual as a measure of how close the solution
is to solving the problem:

[rnl| = [f (@n)]-

The if ... end statement
If we have a certain tolerance for |r,| = |f(x,)|, then we can incorporate that into our Newton method
program using an if ... end statement:
function x = mynewton(f,f1l,x0,n,tol)

% Solves f(x) = 0 by doing n steps of Newton’s method starting at xO0.

% Inputs: f -- the function

% fi1 -- it’s derivative

% x0 -- starting guess, a number

% tol -- desired tolerance, prints a warning if [f(x)[>tol

14

15

% Output: x -- the approximate solution
x = x0; % set x equal to the initial guess xO
for i = 1:n % Do n times
x = x - f(x)/f1(x)) Newton’s formula
end

r = abs(f(x))
if r > tol
warning (’The desired accuracy was not attained’)
end
end

In this program if checks if abs(y) > tol is true or not. If it is true then it does everything between there
and end. If not true, then it skips ahead to end.

In the command window define a function and its derivative:

f = @(x) x~3-5
f1 = @(x) 3%x"2

Then use the program with n = 3, tol = .01, and xy = 2. Next, change tol to 107'° and repeat.

The loop: while ... end

While the previous program will tell us if it worked or not, we still have to input n, the number of steps to
take. Even for a well-behaved problem, if we make n too small then the tolerance will not be attained and
we will have to go back and increase it, or, if we make n too big, then the program will take more steps than
necessary.

One way to control the number of steps taken is to iterate until the residual |r,| = |f(z)] = |y| is small
enough. In MATLAB this is easily accomplished with a while ... end loop.

function x = mynewtontol(f,fl,xo,tol)
% Solves f(x) = 0 using Newton’s method until [f(x)| < tol.

% Inputs: f -- the function
% f1 -- it’s derivative
% x0 -- starting guess, a number
% tol -- desired tolerance, runs until |f(x)]|<tol
% Output: x -- the approximate solution
x = x0; % set x equal to the initial guess xO
y = £(x);
while abs(y) > tol % Do until the tolerence is reached.
x = x - y/f1(x) % Newton’s formula
y = f(x)
end
end
The statement while ... end is a loop, similar to for ... end, but instead of going through the loop a

fixed number of times it keeps going as long as the statement abs(y) > tol is true.

16 LECTURE 4. CONTROLLING ERROR AND CONDITIONAL STATEMENTS

One obvious drawback of the program is that abs (y) might never get smaller than tol. If this happens, the
program would continue to run over and over until we stop it. Try this by setting the tolerance to a really
small number:

|tol = 10°(-100)

then run the program again for f(z) = 23 — 5. (You can use Ctrl-c to stop the program when it is stuck.)

One way to avoid an infinite loop is add a counter variable, say i and a maximum number of iterations
to the programs. Using the while statement, this can be accomplished as:

function x = mynewtontol(f,f1,x0,tol)
% Solves f(x) = 0 using Newton’s method until [f(x)| < tol.

% Safety stop after 1000 iterations

% Inputs: f -- the function

% f1 -- it’s derivative

% x0 -- starting guess, a number

% tol -- desired tolerance, runs until |f(x)]|<tol
% Output: x -- the approximate solution

x = x0; % set x equal to the initial guess xO0.

i=0; % set counter to zero

y = £(x);

while abs(y) > tol & i < 1000
% Do until the tolerence is reached or max iter.

x = x - y/f1(x) % Newton’s formula
y = f(x)
i = i+1; % increment counter

end
end

17

Exercises

4.1

4.2

In Calculus we learn that a geometric series has an exact sum
o=
, 1—7’
=0

provided that || < 1. For instance, if r = .5 then the sum is exactly 2. Below is a script program
that lacks one line as written. Put in the missing command and then use the program to verify the
result above. How many steps does it take? How close is the answer to 27

% Computes a geometric series until it seems to converge
format long
format compact

r = .5;
Snew = 0; % start sum at O
Sold = -1; % set Sold to trick while the first time
i = 0; % count iterations
while Snew > Sold % is the sum still changing?
Sold = Snew; % save previous value to compare to
Snew = Snew + r~ij;
i=i+1;
Snew % prints the final value.
i % prints the # of iterations.

Add a line at the end of the program to compute the relative error of Snew versus the exact value.
Run the script for » = 0.9, 0.99, 0.999, 0.9999, 0.99999, and 0.999999. In a table, report the number
of iterations needed and the relative error for each r.

Modify your program from exercise [§2] to compute the total distance traveled by the ball while its
bounces are at least 1 millimeter high. Use a while loop to decide when to stop summing; do not use
a for loop or trial and error. Turn in your modified program and a brief summary of the results.

