
Part IV

Differential Equations

c©Copyright, Todd Young and Martin Mohlenkamp, Department of Mathematics, Ohio University, 2017



Lecture 29

Reduction of Higher Order Equations to
Systems

The motion of a pendulum

Consider the motion of an ideal pendulum that consists of a mass m attached to an arm of length `. If we
ignore friction, then Newton’s laws of motion tell us

mθ̈ = −mg
`

sin θ,

where θ is the angle of displacement. t
A
A
A
A
A
A
A
Aw
`θ

Figure 29.1: A pendulum.

If we also incorporate moving friction and sinusoidal forcing then the equation takes the form

mθ̈ + γθ̇ +
mg

`
sin θ = A sin Ωt.

Here γ is the coefficient of friction and A and Ω are the amplitude and frequency of the forcing. Usually,
this equation would be rewritten by dividing through by m to produce

θ̈ + cθ̇ + ω sin θ = a sin Ωt, (29.1)

where c = γ/m. ω = g/` and a = A/m.

This is a second order ODE because the second derivative with respect to time t is the highest derivative. It
is nonlinear because it has the term sin θ and which is a nonlinear function of the dependent variable θ. A

116



117

solution of the equation would be a function θ(t). To get a specific solution we need side conditions. Because
it is second order, 2 conditions are needed, and the usual conditions are initial conditions

θ(0) = θ0 and θ̇(0) = v0. (29.2)

Converting a general higher order equation

All of the standard methods for solving ordinary differential equations are intended for first order equations.
For this reason, it is inconvenient to solve higher order equations numerically. However, most higher-order
differential equations that occur in applications can be converted to a system of first order equations and
that is what is usually done in practice.

Suppose that an n-th order equation can be solved for the n-th derivative, i.e. it can be written in the form

x(n) = f

(
t, x, ẋ, ẍ, . . . ,

dn−1x

dtn−1

)
.

Then it can be converted to a first-order system by this standard change of variables:

y1 = x

y2 = ẋ

...

yn = x(n−1) =
dn−1x

dtn−1
.

The resulting first-order system is

ẏ1 = ẋ = y2

ẏ2 = ẍ = y3

...

ẏn = x(n) = f(t, y1, y2, . . . , yn).

In vector form this is simply ẏ = f(t,y) with fi(t,y) = yi+1 for i < n and fn(t,y) = f(t, y1, y2, . . . , yn).

For the example of the pendulum (29.1) the change of variables has the form

y1 = θ

y2 = θ̇,

and the resulting equations are

ẏ1 = y2

ẏ2 = −cy2 − ω sin(y1) + a sin(Ωt).
(29.3)

In vector form this is

ẏ =

(
y2

−cy2 − ω sin(y1) + a sin(Ωt)

)
.



118 LECTURE 29. REDUCTION OF HIGHER ORDER EQUATIONS TO SYSTEMS

The initial conditions are converted to

y(0) =

(
y1(0)
y2(0)

)
=

(
θ0
v0

)
. (29.4)

As stated above, the main reason we wish to change a higher order equation into a system of equations is
that this form is convenient for solving the equation numerically. Most general software for solving ODEs
(including Matlab) requires that the ODE be input in the form of a first-order system. In addition, there
is a conceptual reason to make the change. In a system described by a higher order equation, knowing the
position is not enough to know what the system is doing. In the case of a second order equation, such as
the pendulum, one must know both the angle and the angular velocity to know what the pendulum is really
doing. We call the pair (θ, θ̇) the state of the system. Generally in applications the vector y is the state of
the system described by the differential equation.

Using Matlab to solve a system of ODE’s

In Matlab there are several commands that can be used to solve an initial value problem for a system of
differential equations. Each of these correspond to different solving methods. The standard one is ode45,
which uses the algorithm “Runge-Kutta 4 5”. We will learn about this algorithm later.

To use ode45 for a system, we have to input the vector function f that defines the system, the time span
we want to consider and the initial value of the vector y. Suppose we want to solve the pendulum system
with ω = a = Ω = 1 and c = .1 for t ∈ [0, 20] with initial condition (θ(0), θ′(0)) = (1,−1.5). One way to use
ode45 is to enter

dy = @(t,y)[y(2); -.1*y(2)-sin(y(1))+ sin(t)]

[T Y] = ode45(dy ,[0 20] ,[1; -1.5]);

Alternatively, we could could create a function program

function dy = mypendulum(t,y)

dy = [y(2); -.1*y(2)-sin(y(1))+ sin(t)]

end

and then enter

[T Y] = ode45(@mypendulum ,[0 20] ,[1; -1.5]);

The output T contains times and Y contains values of the vector y at those times. Try

size(T)

T(1:10)

size(Y)

Y(1:10 ,:)

Since the first coordinate of the vector is the position (angle), we are mainly interested in its values:

theta = Y(:,1)

plot(T,theta)



119

In the next two sections we will learn enough about numerical methods for initial value problems to under-
stand roughly how Matlab produces this approximate solution.

Exercises

29.1 Consider the pendulum system but with no friction or forcing, i.e. γ = A = 0. What would equation
(29.3) become in this case? Use the last example to solve the system with the initial condition [θ0, 0]′

for θ0 = .1π. Use the plot of the solution to find the frequency of the pendulum with this initial
condition. Do the same for θ0 = .5π and .9π. How does the frequency depend on the amplitude of a
pendulum?

29.2 Transform the ODE
...
x + ẍ2 − 3ẋ3 + cos2 x = e−t sin(3t)

into a first order system. Suppose the initial conditions for the ODE are x(1) = 1, ẋ(1) = 2, and
ẍ(1) = 0. Find a numerical solution of this IVP using ode45 and plot the first coordinate (x). Try time
intervals [1 2] and [1 2.1] and explain what you observe. (Remember to use entry-wise operations,
.* and .^, in the definition of the vector function.)



Lecture 30

Euler Methods

Numerical Solution of an IVP

Suppose we wish to numerically solve the initial value problem

ẏ = f(t,y), y(a) = y0, (30.1)

on an interval of time [a, b].

By a numerical solution, we must mean an approximation of the solution at a finite number of points, i.e.

(t0,y0), (t1,y1), (t2,y2), . . . , (tn,yn),

where t0 = a and tn = b. The first of these points is exactly the initial value. If we take n steps as above,
and the steps are evenly spaced, then the time change in each step is

h =
b− a
n

, (30.2)

and the times ti are given simply by ti = a+ ih. This leaves the most important part of finding a numerical
solution: determining y1,y2, . . . ,yn in a way that is as consistent as possible with (30.1). To do this, first
write the differential equation in the indexed notation

ẏi ≈ f(ti,yi), (30.3)

and then replace the derivative ẏ by a difference. There are many ways we might carry this out and in the
next section we study the simplest.

The Euler Method

The most straight forward approach is to replace ẏi in (30.3) by its forward difference approximation. This
gives

yi+1 − yi
h

= f(ti,yi).

Rearranging this gives us a way to obtain yi+1 from yi known as Euler’s method:

yi+1 = yi + hf(ti,yi). (30.4)

With this formula, we can start from (t0,y0) and compute all the subsequent approximations (ti,yi). This
is very easy to implement, as you can see from the following program (which can be downloaded from the
class web site).

120



121

function [T , Y] = myeuler(f,tspan ,y0,n)

% function [T , Y] = myeuler(f,tspan ,y0,n)

% Solves dy/dt = f(t,y) with initial condition y(a) = y0

% on the interval [a,b] using n steps of Euler s method.

% Inputs: f -- a function f(t,y) that returns a column vector of the

% same length as y

% tspan -- a vector [a,b] with the start and end times

% y0 -- a column vector of the initial values , y(a) = y0

% n -- number of steps to use

% Outputs: T -- a n+1 column vector containing the times

% Y -- a (n+1) by d matrix where d is the length of y

% Y(j,i) gives the ith component of y at time T(j)

a = tspan (1); b = tspan (2); % parse starting and ending points

h = (b-a)/n; % step size

t = a; T = a; % t is the current time and T will record all times

y = y0; % y is the current variable values , as a column vector

Y = y0 ’; % Y will record the values at all steps , each in a row

for i = 1:n

y = y + h*f(t,y); % Euler update of y to next time

t = a + i*h; % The next time.

T = [T; t]; % Record t and y into T and Y.

Y = [Y; y’];

end

end

To use this program we need a function, such as the vector function for the pendulum:

dy = @(t,y)[y(2); -.1*y(2)-sin(y(1))+ sin(t)]

Save this and then type

[T Y] = myeuler(dy ,[0 20] ,[1; -1.5] ,5);

Here [0 20] is the time span you want to consider, [1;-1.5] is the initial value of the vector y and 5 is the
number of steps. The output T contains times and Y contains values of the vector as the times. Try

size(T)

size(Y)

Since the first coordinate of the vector is the angle, we only plot its values:

theta = Y(:,1);

plot(T,theta)

In this plot it is clear that n = 5 is not adequate to represent the function. Type

hold on



122 LECTURE 30. EULER METHODS

then redo the above with 5 replaced by 10. Next try 20, 40, 80, and 200. As you can see the graph becomes
increasingly better as n increases. We can compare these calculations with Matlab’s built-in function with
the commands

[T Y]= ode45(dy ,[0 20] ,[1; -1.5]);

theta = Y(:,1);

plot(T,theta ,’r’)

The problem with the Euler method

You can think of the Euler method as finding a linear approximate solution to the initial value problem on
each time interval. An obvious shortcoming of the method is that it makes the approximation based on
information at the beginning of the time interval only. This problem is illustrated well by the following IVP:

ẍ+ x = 0 with x(0) = 1 and ẋ(0) = 0 . (30.5)

You can easily check that the exact solution of this IVP is

x(t) = cos(t).

If we make the standard change of variables

y1 = x and y2 = ẋ,

then we get
ẏ1 = y2 and ẏ2 = −y1.

Then the solution should be y1(t) = cos(t) and y2(t) = sin(t). If we then plot the solution in the (y1, y2)
plane, we should get exactly a unit circle. We can solve this IVP with Euler’s method:

dy = @(t,y)[y(2);-y(1)]

[T Y] = myeuler(dy ,[0 4*pi] ,[1;0] ,20)

y1 = Y(:,1);

y2 = Y(:,2);

plot(y1 ,y2)

As you can see the approximate solution goes far from the true solution. Even if you increase the number
of steps, the Euler solution will eventually drift outward away from the circle because it does not take into
account the curvature of the solution.

The Modified Euler Method

An idea which is similar to the idea behind the trapezoid method would be to consider f at both the
beginning and end of the time step and take the average of the two. Doing this produces the Modified (or
Improved) Euler method represented by the following equations:

k1 = hf(ti,yi)

k2 = hf(ti + h,yi + k1)

yi+1 = yi +
1

2
(k1 + k2) .

(30.6)



123

Here k1 captures the information at the beginning of the time step (same as Euler), while k2 is the information
at the end of the time step.

A program mymodeuler.m that implements the Modified method may be downloaded from the class web
site.

Test this program on the IVP above:

[T Ym] = mymodeuler(dy ,[0 4*pi] ,[1;0] ,20)

ym1 = Ym(:,1);

ym2 = Ym(:,2);

plot(ym1 ,ym2)

You will find that the results are much better than for the plain Euler method.

Exercises

30.1 Download the files myeuler.m and mymodeuler.m from the class web site.

(a) Type the following commands:

dy = @(t,y) sin(t)*cos(y);

hold on

[T Y] = myeuler(dy ,[0 ,12] ,.1 ,20);

plot(T,Y)

Position the plot window so that it can always be seen and type

[T Y] = myeuler(dy ,[0 ,12] ,.1 ,30);

plot(T,Y)

(You can use the up button to reduce typing.) Continue to increase the last number in the above
until the graph stops changing (as far as you can see). Record this number and print the final
graph. Type hold off and kill the plot window.

(b) Follow the same procedure using mymodeuler.m .

(c) Describe what you observed. In particular compare how fast the two methods converge as n is
increased (h is decreased).



Lecture 31

Higher Order Methods

The order of a method

For numerical solutions of an initial value problem there are two ways to measure the error. The first is the
error of each step. This is called the Local Truncation Error or LTE. The other is the total error for the
whole interval [a, b]. We call this the Global Truncation Error or GTE.

For the Euler method the LTE is of order O(h2), i.e. the error is comparable to h2. We can show this directly
using Taylor’s Theorem:

y(t+ h) = y(t) + hẏ(t) +
h2

2
ÿ(c)

for some c between t and t+ h. In this equation we can replace ẏ(t) by f(t,y(t)), which makes the first two

terms of the right hand side be exactly the Euler method. The error is then h2

2 ÿ(c) or O(h2). It would be
slightly more difficult to show that the LTE of the modified Euler method is O(h3), an improvement of one
power of h.

We can roughly get the GTE from the LTE by considering the number of steps times the LTE. For any
method, if [a, b] is the interval and h is the step size, then n = (b−a)/h is the number of steps. Thus for any
method, the GTE is one power lower in h than the LTE. Thus the GTE for Euler is O(h) and for modified
Euler it is O(h2).

By the order of a method, we mean the power of h in the GTE. Thus the Euler method is a 1st order
method and modified Euler is a 2nd order method.

Fourth Order Runge-Kutta

The most famous of all IVP methods is the classic Runge-Kutta method of order 4:

k1 = hf(ti,y)

k2 = hf(ti + h/2,yi + k1/2)

k3 = hf(ti + h/2,yi + k2/2)

k4 = hf(ti + h,yi + k3)

yi+1 = yi +
1

6
(k1 + 2k2 + 2k3 + k4) .

(31.1)

Notice that this method uses values of f(t,y) at 4 different points. In general a method needs n values of f to
achieve order n. The constants used in this method and other methods are obtained from Taylor’s Theorem.

124



125

They are precisely the values needed to make all error terms cancel up to hn+1f (n+1)(c)/(n+ 1)!.

Variable Step Size and RK45

If the order of a method is n, then the GTE is comparable to hn, which means it is approximately Chn,
where C is some constant. However, for different differential equations, the values of C may be very different.
Thus it is not easy beforehand to tell how small h should be to get the error within a given tolerence. For
instance, if the true solution oscillates very rapidly, we will obviously need a smaller step size than for a
solution that is nearly constant.

How can a program then choose h small enough to produce the required accuracy? We also do not wish to
make h much smaller than necessary, since that would increase the number of steps. To accomplish this a
program tries an h and tests to see if that h is small enough. If not it tries again with a smaller h. If it is
too small, it accepts that step, but on the next step it tries a larger h. This process is called variable step
size.

Deciding if a single step is accurate enough could be accomplished in several ways, but the most common
are called embedded methods. The Runge-Kutta 45 method, which is used in ode45, is an embedded
method. In the RK45, the function f is evaluated at 5 different points. These are used to make a 5th order
estimate yi+1. At the same time, 4 of the 5 values are used to also get a 4th order estimate. If the 4th
order and 5th order estimates are close, then we can conclude that they are accurate. If there is a large
discrepency, then we can conclude that they are not accurate and a smaller h should be used.

To see variable step size in action, we will define and solve two different ODEs and solve them on the same
interval. Create this script and run it:

dy1 = @(t,y) [-y(2);y(1)];

dy2 = @(t,y) [-5*y(2);5*y(1)];

[T1 Y1] = ode45(dy1 ,[0 20] ,[1;0]);

[T2 Y2] = ode45(dy2 ,[0 20] ,[1;0]);

y1 = Y1(:,1);

y2 = Y2(:,1);

plot(T1 ,y1 ,’bx -’)

hold on

plot(T2 ,y2 ,’ro -’)

size(T1)

size(T2)

Why order matters

Many people would conclude on first encounter that the advantage of a higher order method would be that
you can get a more accurate answer than for a lower order method. In reality, this is not quite how things
work. In engineering problems, the accuracy needed is usually a given and it is usually not extremely high.
Thus getting more and more accurate solutions is not very useful. So where is the advantage? Consider the
following example.

Suppose that you need to solve an IVP with an error of less than 10−4. If you use the Euler method, which



126 LECTURE 31. HIGHER ORDER METHODS

has GTE of order O(h), then you would need h ≈ 10−4. So you would need about n ≈ (b − a) × 104 steps
to find the solution.

Suppose you use the second order, modified Euler method. In that case the GTE is O(h2), so you would
need to use h2 ≈ 10−4, or h ≈ 10−2. This would require about n ≈ (b − a) × 102 steps. That is a hundred
times fewer steps than you would need to get the same accuracy with the Euler method.

If you use the RK4 method, then h4 needs to be approximately 10−4, and so h ≈ 10−1. This means you
need only about n ≈ (b− a)× 10 steps to solve the problem, i.e. a thousand times fewer steps than for the
Euler method.

Thus the real advantage of higher order methods is that they can run a lot faster at the same accuracy. This
can be especially important in applications where one is trying to make real-time adjustments based on the
calculations. Such is often the case in robots and other applications with dynamic controls.

Exercises

31.1 There is a Runge-Kutta 2 method, which is also known as the midpoint method. It is summarized by
the following equations:

k1 = hf(ti,yi)

k2 = hf(ti + h/2,yi + k1/2)

yi+1 = yi + k2.

(31.2)

(a) Modify the program mymodeuler into a program myRK2 that does the RK2 method.

(b) Test myRK2 and mymodeuler on the following IVP with time span [0, 4π]:

ẍ+ x = 0 with x(0) = 1 and ẋ(0) = 0.

Using format long, make a table with yn+1 for each of the two programs for n = 10, 100, and
1000. Compute the difference between yn+1 and the true solution y(4π) = (1, 0).

Turn in the modified program and a summary of the results.



Lecture 32

Multi-step Methods*

Exercises

32.1

127



Lecture 33

ODE Boundary Value Problems and Finite
Differences

Steady State Heat and Diffusion

If we consider the movement of heat in a long thin object (like a metal bar), it is known that the temperature,
u(x, t), at a location x and time t satisfies the partial differential equation

ut − uxx = g(x, t), (33.1)

where g(x, t) is the effect of any external heat source. The same equation also describes the diffusion of a
chemical in a one-dimensional environment. For example the environment might be a canal, and then g(x, t)
would represent how a chemical is introduced.

Sometimes we are interested only in the steady state of the system, supposing g(x, t) = g(x) and u(x, t) =
u(x). In this case

uxx = −g(x).

This is a linear second-order ordinary differential equation. We could find its solution exactly if g(x) is
not too complicated. If the environment or object we consider has length L, then typically one would have
conditions on each end of the object, such as u(0) = 0, u(L) = 0. Thus instead of an initial value problem,
we have a boundary value problem or BVP.

Beam With Tension

Consider a simply supported beam with modulus of elasticity E, moment of inertia I, a uniform load w,
and end tension T (see Figure 33.1). If y(x) denotes the deflection at each point x in the beam, then y(x)
satisfies the differential equation

y′′

(1 + (y′)2)3/2
− T

EI
y =

wx(L− x)

2EI
, (33.2)

with boundary conditions y(0) = y(L) = 0. This equation is nonlinear and there is no hope to solve it
exactly. If the deflection is small then (y′)2 is negligible compared to 1 and the equation approximately
simplifies to

y′′ − T

EI
y =

wx(L− x)

2EI
. (33.3)

This is a linear equation and we can find the exact solution. We can rewrite the equation as

y′′ − αy = βx(L− x), (33.4)

128



129

t t� -T T

? ? ? ? ?

w

Figure 33.1: A simply supported beam with a uniform load w and end tension T .

where

α =
T

EI
and β =

w

2EI
, (33.5)

and then the exact solution is

y(x) =
2β

α2

e
√
αL

e
√
αL + 1

e−
√
αx +

2β

α2

1

e
√
αL + 1

e
√
αx +

β

α
x2 − βL

α
x+

2β

α2
. (33.6)

Finite Difference Method – Linear ODE

A finite difference equation is an equation obtained from a differential equation by replacing the variables
by their discrete versions and derivatives by difference formulas.

First we will consider equation (33.3). Suppose that the beam is a W12x22 structural steel I-beam. Then
L = 120 in., E = 29 × 106lb./in.2 and I = 121in.4. Suppose that the beam is carrying a uniform load of
100, 000 lb. so that w = 120, 000/120 = 10, 000 and a tension of T = 10, 000 lb.. We calculate from (33.5)
α = 2.850× 10−6 and β = 1.425× 10−6. Thus we have the following BVP:

y′′ = 2.850× 10−6y + 1.425× 10−6x(120− x), y(0) = y(120) = 0. (33.7)

First subdivide the interval [0, 120] into four equal subintervals. The nodes of this subdivion are x0 = 0,
x1 = 30, x2 = 60, . . . , x4 = 120. We will then let y0, y1, . . . , y4 denote the deflections at the nodes. From
the boundary conditions we have immediately:

y0 = y4 = 0.

To determine the deflections at the interior points we will rely on the differential equation. Recall the central
difference formula

y′′(xi) ≈
yi+1 − 2yi + yi−1

h2
.

In this case we have h = (b− a)/n = (120− 0)/4 = 30. Replacing all the variables in the equation (33.4) by
their discrete versions we get

yi+1 − 2yi + yi−1 = h2αyi + h2βxi(L− xi).

Substituting in for α, β and h we obtain:

yi+1 − 2yi + yi−1 = 900× 2.850× 10−6yi + 900× 1.425× 10−6xi(120− xi)
= 2.565× 10−3yi + 1.2825× 10−3xi(120− xi).



130 LECTURE 33. ODE BOUNDARY VALUE PROBLEMS AND FINITE DIFFERENCES

This equation makes sense for i = 1, 2, 3. At x1 = 30, the equation becomes:

y2 − 2y1 + y0 = 2.565× 10−3y1 + 1.2825× 10−3 × 30(90)

⇔ y2 − 2.002565y1 = 3.46275.
(33.8)

Note that this equation is linear in the unknowns y1 and y2. At x2 = 60 we have:

y3 − 2y2 + y1 = .002565y2 + 1.2825× 10−3 × 602

⇔ y3 − 2.002565y2 + y1 = 4.617.
(33.9)

At x3 = 90 we have (since y4 = 0)

−2.002565y3 + y2 = 3.46275. (33.10)

Thus (y1, y2, y3) is the solution of the linear system: −2.002565 1 0 3.46275
1 −2.002565 1 4.617
0 1 −2.002565 3.46275

 .

We can easily find the solution of this system in Matlab:

A = [ -2.002565 1 0 ; 1 -2.002565 1 ; 0 1 -2.002565]

b = [ 3.46275 4.617 3.46275 ]’

y = A\b

To graph the solution, we need define the x values and add on the values at the endpoints:

x = 0:30:120

y = [0 ; y ; 0]

plot(x,y,’d’)

Adding a spline will result in an excellent graph.

The exact solution of this BVP is given in (33.6). That equation, with the parameter values for the W12x22
I-beam as in the example, is in the program myexactbeam.m on the web site. We can plot the true solution
on the same graph:

hold on

myexactbeam

Thus our numerical solution is extremely good considering how few subintervals we used and how very large
the deflection is.

An amusing exercise is to set T = 0 in the program myexactbeam.m; the program fails because the exact
solution is no longer valid. Also try T = .1 for which you will observe loss of precision. On the other hand
the finite difference method still works when we set T = 0.



131

Exercises

33.1 Derive the finite difference equations for the BVP (33.7) on the same domain ([0, 120]), but with eight
subintervals and solve (using Matlab) as in the example. Plot your result, together on the same plot
with the exact solution (33.6) from the program myexactbeam.m.

33.2 By replacing y′′ and y′ with central differences, derive the finite difference equation for the boundary
value problem

y′′ + y′ − y = x on [0, 1] with y(0) = y(1) = 0

using 4 subintervals. Solve them and plot the solution using Matlab.



Lecture 34

Finite Difference Method – Nonlinear ODE

Heat conduction with radiation

If we again consider the heat in a metal bar of length L, but this time consider the effect of radiation as well
as conduction, then the steady state equation has the form

uxx − d(u4 − u4b) = −g(x), (34.1)

where ub is the temperature of the background, d incorporates a coefficient of radiation and g(x) is the heat
source.

If we again replace the continuous problem by its discrete approximation then we get

ui+1 − 2ui + ui−1
h2

− d(u4i − u4b) = −gi = −g(xi). (34.2)

This equation is nonlinear in the unknowns, thus we no longer have a system of linear equations to solve, but
a system of nonlinear equations. One way to solve these equations would be by the multivariable Newton
method. Instead, we introduce another interative method.

Relaxation Method for Nonlinear Finite Differences

We can rewrite equation (34.2) as

ui+1 − 2ui + ui−1 = h2d(u4i − u4b)− h2gi.

From this we can solve for ui in terms of the other quantities:

2ui = ui+1 + ui−1 − h2d(u4i − u4b) + h2gi.

Next we add ui to both sides of the equation to obtain

3ui = ui+1 + ui + ui−1 − h2d(u4i − u4b) + h2gi,

and then divide by 3 to get

ui =
1

3
(ui+1 + ui + ui−1)− h2

3

(
d(u4i − u4b) + gi

)
.

Now for the main idea. We will begin with an initial guess for the value of ui for each i, which we can
represent as a vector u0. Then we will use the above equation to get better estimates, u1, u2, . . . , and hope
that they converge to the correct answer.

132



133

If we let
uj = (uj0, u

j
1, u

j
2, . . . , u

j
n−1, u

j
n)

denote the jth approximation, then we can obtain that j + 1st estimate from the formula

uj+1
i =

1

3

(
uji+1 + uji + uji−1

)
− h2

3

(
d((uji )

4 − u4b) + gi

)
.

Notice that gi and ub do not change. In the resulting equation, we have ui at each successive step depending
on its previous value and the equation itself.

Implementing the Relaxation Method

In the following program we solve the finite difference equations (34.2) with the boundary conditions u(0) = 0
and u(L) = 0. We let L = 4, n = 4, d = 1, and g(x) = sin(πx/4). Notice that the vector u always contains
the current estimate of the values of u.

% mynonlinheat (lacks comments)

% Purpose:

L = 4; %

n = 4; %

h = L/n; %

hh = h^2/3; %

u0 = 0; %

uL = 0; %

ub = .5; %

ub4 = ub^4; %

x = 0:h:L; %

g = sin(pi*x/4); %

u = zeros(1,n+1); %

steps = 4; %

u(1)=u0; %

u(n+1)=uL; %

for j = 1: steps

%

u(2:n) = (u(3:n+1)+u(2:n)+u(1:n -1))/3 + hh*(-u(2:n).^4+ ub4+g(2:n));

end

plot(x,u)

If you run this program with the given n and steps the result will not seem reasonable.

We can plot the initial guess by adding the command plot(x,u) right before the for loop. We can also
plot successive iterations by moving the last plot(x,u) before the end. Now we can experiment and see if
the iteration is converging. Try various values of steps and n to produce a good plot. You will notice that
this method converges quite slowly. In particular, as we increase n, we need to increase steps like n2, i.e. if
n is large then steps needs to be really large.



134 LECTURE 34. FINITE DIFFERENCE METHOD – NONLINEAR ODE

Exercises

34.1 (a) Modify the script program mynonlinheat to plot the initial guess and all intermediate approx-
imations. Add complete comments to the program. Print the program and a plot using large
enough n and steps to see convergence.

(b) Modify your improved mynonlinheat to mynonlinheattwo that has the boundary conditions

u(0) = 5 and u(L) = 10.

Fix the comments to reflect the new boundary conditions. Print the program and a plot using
large enough n and steps to see convergence.



Lecture 35

Parabolic PDEs - Explicit Method

Heat Flow and Diffusion

In the previous sections we studied PDE that represent steady-state heat problem. There was no time
variable in the equation. In this section we begin to study how to solve equations that involve time, i.e. we
calculate temperature profiles that are changing.

The conduction of heat and diffusion of a chemical happen to be modeled by the same differential equation.
The reason for this is that they both involve similar processes. Heat conduction occurs when hot, fast moving
molecules bump into slower molecules and transfer some of their energy. In a solid this involves moles of
molecules all moving in different, nearly random ways, but the net effect is that the energy eventually spreads
itself out over a larger region. The diffusion of a chemical in a gas or liquid simliarly involves large numbers
of molecules moving in different, nearly random ways. These molecules eventually spread out over a larger
region.

In three dimensions, the equation that governs both of these processes is the heat/diffusion equation

ut = c∆u ,

where c is the coefficient of conduction or diffusion, and ∆u(x, y, z) = uxx+uyy +uzz. The symbol ∆ in this
context is called the Laplacian. If there is also a heat/chemical source, then it is incorporated a function
g(x, y, z, t) in the equation as

ut = c∆u+ g.

In some problems the z dimension is irrelevent, either because the object in question is very thin, or u does
not change in the z direction. In this case the equation is

ut = c∆u = c(uxx + uyy).

Finally, in some cases only the x direction matters. In this case the equation is just

ut = cuxx, (35.1)

or

ut = cuxx + g(x, t). (35.2)

In this lecture we will learn a straight-forward technique for solving (35.1) and (35.2). It is very similar to
the finite difference method we used for nonlinear boundary value problems.

135



136 LECTURE 35. PARABOLIC PDES - EXPLICIT METHOD

It is worth mentioning a related equation

ut = c∆(uγ) for γ > 1 ,

which is called the porus-media equation. This equation models diffusion in a solid, but porus, material,
such as sandstone or an earthen structure. We will not solve this equation numerically, but the methods
introduced here would work. Many equations that involve 1 time derivative and 2 spatial derivatives are
parabolic and the methods introduced here will work for most of them.

Explicit Method Finite Differences

The one dimensional heat/diffusion equation ut = cuxx, has two independent variables, t and x, and so we
have to discretize both. Since we are considering 0 ≤ x ≤ L, we subdivide [0, L] into m equal subintervals,
i.e. let

h = L/m

and

(x0, x1, x2, . . . , xm−1, xm) = (0, h, 2h, . . . , L− h, L).

Similarly, if we are interested in solving the equation on an interval of time [0, T ], let

k = T/n

and

(t0, t1, t2, . . . , tn−1, tn) = (0, k, 2k, . . . , T − k, T ).

We will then denote the approximate solution at the grid points by

uij ≈ u(xi, tj).

The equation ut = cuxx can then be replaced by the difference equations

ui,j+1 − ui,j
k

=
c

h2
(ui−1,j − 2ui,j + ui+1,j). (35.3)

Here we have used the forward difference for ut and the central difference for uxx. This equation can be
solved for ui,j+1 to produce

ui,j+1 = rui−1,j + (1− 2r)ui,j + rui+1,j (35.4)

for 1 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1, where

r =
ck

h2
. (35.5)

The formula (35.4) allows us to calculate all the values of u at step j + 1 using the values at step j.

Notice that ui,j+1 depends on ui,j , ui−1,j and ui+1,j . That is u at grid point i depends on its previous value
and the values of its two nearest neighbors at the previous step (see Figure 35.1).



137

x x x x x
x | | | x
x x ui,j+1

x x
x x x x x

6

tj

tj+1

xi−1 xi xi+1

Figure 35.1: The value at grid point (i, j+1) depends on its previous value and the previous values
of its nearest neighbors.

Initial Condition

To solve the partial differential equation (35.1) or (35.2) we need an initial condition. This represents the
state of the system when we begin, i.e. the initial temperature distribution or initial concentration profile.
This is represented by

u(x, 0) = f(x).

To implement this in a program we let

ui,0 = f(xi).

Boundary Conditions

To solve the partial differential equation (35.1) or (35.2) we also need boundary conditions. Just as in the
previous section we will have to specify something about the ends of the domain, i.e. at x = 0 and x = L.
One possibility is fixed boundary conditions, which we can implement just as we did for the ODE boundary
value problem.

A second possibility is called variable boundary conditions. This is represented by time-dependent
functions,

u(0, t) = g1(t) and u(L, t) = g2(t).

In a heat problem, g1 and g2 would represent heating or cooling applied to the ends. These are easily
implemented in a program by letting u0,j = g1(tj) and um,j = g2(tj).



138 LECTURE 35. PARABOLIC PDES - EXPLICIT METHOD

Implementation

The following program (also available on the web page) implements the explicit method. It incorporates
variable boundary conditions at both ends. To run it you must define functions f , g1 and g2. Notice that
the main loop has only one line. The values of u are kept as a matrix. It is often convenient to define a
matrix of the right dimension containing all zeros, and then fill in the calculated values as the program runs.
Run this program using L = 2, T = 20, f(x) = .5x, g1(t) = 0, and g2(t) = cos(t).

function [t x u] = myheat(f,g1,g2,L,T,m,n,c)

% function [t x u] = myheat(f,g1,g2,L,T,m,n,c)

% solve u_t = c u_xx for 0<=x<=L, 0<=t<=T

% BC: u(0, t) = g1(t); u(L,t) = g2(t)

% IC: u(x, 0) = f(x)

% Inputs:

% f -- function for IC

% g1 ,g2 -- functions for BC

% L -- length of rod

% T -- length of time interval

% m -- number of subintervals for x

% n -- number of subintervals for t

% c -- rate constant in equation

% Outputs:

% t -- vector of time points

% x -- vector of x points

% u -- matrix of the solution , u(i,j)~=u(x(i),t(j))

% Also plots.

h = L/m; k = T/n; % set space and time step sizes

r = c*k/h^2; rr = 1 - 2*r;

x = linspace(0,L,m+1); % set space discretization

t = linspace(0,T,n+1); % set time discretization

%Set up the matrix for u:

u = zeros(m+1,n+1);

% evaluate initial conditions

u(:,1) = f(x);

% evaluate boundary conditions

u(1,:) = g1(t); u(m+1,:) = g2(t);

% find solution at remaining time steps

for j = 1:n

% explict method update at next time

u(2:m,j+1) = r*u(1:m-1,j) + rr*u(2:m,j) + r*u(3:m+1,j);

end

% plot the results

mesh(x,t,u’)

end



139

Exercises

35.1 Run the program myheat.m with L = 2π, T = 20, c = .5, g1(t) = sin(t), g2(t) = 0 and f(x) =
− sin(x/4). Set m = 20 and experiment with n. Get a plot when the program is stable and one when
it isn’t. Turn in the plots.

35.2 Make a version of the program myheat.m that does not input n or T but instead has inputs:

% k -- size of the time steps

% tempthresh -- keeps stepping in time until the maximum temperature

% in the bar is less than tempthresh

For L = 2π, c = .01, g1(t) = 0, g2(t) = 10, f(x) = 100 and m = 10, set k so that the method will be
stable. Run it with tempthresh = 20. When does the temperature in the bar drop below 20?



Lecture 36

Solution Instability for the Explicit Method

As we saw in experiments using myheat.m, the solution can become unbounded unless the time steps are
small. In this lecture we consider why.

Writing the Difference Equations in Matrix Form

If we use the boundary conditions u(0) = u(L) = 0 then the explicit method of the previous section has the
form

ui,j+1 = rui−1,j + (1− 2r)ui,j + rui+1,j for 1 ≤ i ≤ m− 1 and 0 ≤ j ≤ n− 1 ,

where u0,j = 0 and um,j = 0. This is equivalent to the matrix equation

uj+1 = Auj , (36.1)

where uj is the column vector (u1,j , u2,j , . . . , um,j)
′ representing the state at the jth time step and A is the

matrix

A =



1− 2r r 0 · · · 0

r 1− 2r r
. . .

...

0
. . .

. . .
. . . 0

...
. . . r 1− 2r r

0 · · · 0 r 1− 2r


. (36.2)

Unfortunately, this matrix can have a property which is very bad in this context. Namely, it can cause
exponential growth of error unless r is small. To see how this happens, suppose that Uj is the vector of
correct values of u at time step tj and Ej is the error of the approximation uj , then

uj = Uj + Ej .

From (36.1), the approximation at the next time step will be

uj+1 = AUj +AEj ,

and if we continue for k steps,
uj+k = AkUj +AkEj .

The problem with this is the term AkEj . This term is exactly what we would do in the power method for
finding the eigenvalue of A with the largest absolute value. If the matrix A has eigenvalues with absolute
value greater than 1, then this term will grow exponentially. Figure 36.1 shows the largest absolute value of
an eigenvalue of A as a function of the parameter r for various sizes of the matrix A. As you can see, for
r > 1/2 the largest absolute eigenvalue grows rapidly for any m and quickly becomes greater than 1.

140



141

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

r

M
a
x
im

u
m

 a
b
s
o
lu

te
 e

ig
e
n
v
a
lu

e

m=2 

m=3 

Figure 36.1: Maximum absolute eigenvalue as a function of r for the matrix A from the explicit
method for the heat equation calculated for matrices A of sizes m = 2 . . . 10. Whenever the
maximum absolute eigenvalue is greater than 1 the method is unstable, i.e. errors grow exponentially
with each step. When using the explicit method r < 1/2 is a safe choice.

Consequences

Recall that r = ck/h2. Since this must be less than 1/2, we have

k <
h2

2c
.

The first consequence is obvious: k must be relatively small. The second is that h cannot be too small. Since
h2 appears in the formula, making h small would force k to be extremely small! A third consequence is that
we have a converse of this analysis. Suppose r < .5. Then all the eigenvalues will be less than one. Recall
that the error terms satisfy

uj+k = AkUj +AkEj .

If all the eigenvalues of A are less than 1 in absolute value then AkEj grows smaller and smaller as k increases.
This is really good. Rather than building up, the effect of any error diminishes as time passes! From this
we arrive at the following principle: If the explicit numerical solution for a parabolic equation does
not blow up, then errors from previous steps fade away!

Finally, we note that if we have non-zero boundary conditions then instead of equation (36.1) we have

uj+1 = Auj + rbj , (36.3)

where the first and last entries of bj contain the boundary conditions and all the other entries are zero. In
this case the errors behave just as before, if r > 1/2 then the errors grow and if r < 1/2 the errors fade away.



142 LECTURE 36. SOLUTION INSTABILITY FOR THE EXPLICIT METHOD

We can write a function program myexppmatrix that produces the matrix A in (36.2), for given inputs m
and r. Without using loops we can use the diag command to set up the matrix:

function A = myexpmatrix(m,r)

% produces the matrix for the explicit method for a parabolic equation

% Inputs: m -- the size of the matrix

% r -- the main parameter , ck/h^2

% Output: A -- an m by m matrix

u = (1-2*r)*ones(m,1); % make a vector for the main diagonal

v = r*ones(m-1 ,1); % make a vector for the upper and lower diagonals

A = diag(u) + diag(v,1) + diag(v,-1); % assemble

end

Test this using m = 6 and r = .4, .6. Check the eigenvalues and eigenvectors of the resulting matirices:

A = myexpmatrix (6 ,.6)

[v e] = eig(A)

What is the “mode” represented by the eigenvector with the largest absolute eigenvalue? How is that
reflected in the unstable solutions?

Exercises

36.1 Let L = π, T = 20, f(x) = .1 sin(x), g1(t) = 0, g2(t) = 0, c = .5, and m = 20, as used in the program
myheat.m. What value of n corresponds to r = 1/2? Try different n in myheat.m to find precisely
when the method works and when it fails. Is r = 1/2 the boundary between failure and success? Hand
in a plot of the last success and the first failure. Include the values of n and r in each.

36.2 Write a well-commented Matlab script program that produces the graph in Figure 36.1 for m = 4.
Your program should:

• define r values from 0 to 1,

• for each r

– create the matrix A by calling myexppmatrix,

– calculate the eigenvalues of A,

– find the max of the absolute values, and

• plot these numbers versus r.



Lecture 37

Implicit Methods

The Implicit Difference Equations

By approximating uxx and ut at tj+1 rather than tj , and using a backwards difference for ut, the equation
ut = cuxx is approximated by

ui,j+1 − ui,j
k

=
c

h2
(ui−1,j+1 − 2ui,j+1 + ui+1,j+1).

Note that all the terms have index j + 1 except one and isolating this term leads to

ui,j = −rui−1,j+1 + (1 + 2r)ui,j+1 − rui+1,j+1 for 1 ≤ i ≤ m− 1, (37.1)

where r = ck/h2 as before. The entries involved in (37.1) are illustrated in Figure 37.1.

Now we have uj given in terms of uj+1. This seems like a problem, since uj+1 is the solution at a later time
than uj , so we could never know uj+1 before we knew uj . However, the relationship between uj+1 and uj
is linear. Using matrix notation, we have

uj = Buj+1 − rbj+1,

where bj+1 represents the boundary condition. Thus to find uj+1 from uj , we need only solve the linear
system

Buj+1 = uj + rbj+1 , (37.2)

where uj and bj+1 are given and

B =


1 + 2r −r
−r 1 + 2r −r

. . .
. . .

. . .

−r 1 + 2r −r
−r 1 + 2r

 . (37.3)

Using this scheme is called the implicit method since uj+1 is defined implicitly. Since we have to solve a
linear system at each step, the implicit is more work per step than the explicit method.

Since we are solving (37.2), the most important quantity is the maximum absolute eigenvalue of B−1, which
is 1 divided by the smallest eigenvalue of B. Figure 37.2 shows the maximum absolute eigenvalues of B−1

as a function of r for various size matrices. Notice that this absolute maximum is always less than 1. Thus
errors are always diminished over time and so this method is always stable. For the same reason it is also
always as accurate as the individual steps.

143



144 LECTURE 37. IMPLICIT METHODS

x x x x x
x x ui,j

x x
x | | | x
x x x x x

?

tj

tj+1

xi−1 xi xi+1

Figure 37.1: The value at grid point (i, j) depends on its future value and the future values of its
nearest neighbors.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.4

0.5

0.6

0.7

0.8

0.9

1

r

M
a

x
im

u
m

 a
b

s
o

lu
te

 e
ig

e
n

v
a

lu
e

m = 2
m = 3

Figure 37.2: Maximum absolute eigenvalue as a function of r for the matrix B−1 from the implicit
method for the heat equation calculated for matrices B of sizes m = 2 . . . 10. Whenever the
maximum absolute eigenvalue is less than 1 the method is stable, i.e. it is always stable.



145

Both this implicit method and the explicit method in the previous lecture make O(h2) error in approximating
uxx and O(k) error in approximating ut, so they have total error O(h2 + k). Thus although the stability
condition allows the implicit method to use arbitrarily large k, to maintain accuracy we still need k ∼ h2.

Crank-Nicholson Method

Now that we have two different methods for solving parabolic equation, it is natural to ask, “can we improve
by taking an average of the two methods?” The answer is yes.

We implement a weighted average of the two methods by considering an average of the approximations of
uxx at j and j + 1. This leads to the equations

ui,j+1 − ui,j
k

=
λc

h2
(ui−1,j+1 − 2ui,j+1 + ui+1,j+1) +

(1− λ)c

h2
(ui−1,j − 2ui,j + ui+1,j). (37.4)

The implicit method contained in these equations is called the Crank-Nicholson method. Gathering
terms yields the equations

−rλui−1,j+1 + (1 + 2rλ)ui,j+1 − rλui+1,j+1 = r(1− λ)ui−1,j + (1− 2r(1− λ))ui,j + r(1− λ)ui+1,j .

In matrix notation this is
Bλuj+1 = Aλuj + rbj+1,

where

Aλ =


1− 2(1− λ)r (1− λ)r

(1− λ)r 1− 2(1− λ)r (1− λ)r
. . .

. . .
. . .

(1− λ)r 1− 2(1− λ)r (1− λ)r
(1− λ)r 1− 2(1− λ)r


and

Bλ =


1 + 2rλ −rλ
−rλ 1 + 2rλ −rλ

. . .
. . .

. . .

−rλ 1 + 2rλ −rλ
−rλ 1 + 2rλ

 .

In this equation uj and bj+1 are known, Auj can be calculated directly, and then the equation is solved for
uj+1.

If we choose λ = 1/2, then we are in effect doing a central difference for ut, which has error O(k2). Our
total error is then O(h2 + k2). With a bit of work, we can show that the method is always stable, and so we
can use k ∼ h without a problem.

To get optimal accuracy with a weighted average, it is always necessary to use the right weights. For the
Crank-Nicholson method with a given r, we need to choose

λ =
r − 1/6

2r
.

This choice will make the method have truncation error of order O(h4 +k2), which is really good considering
that the implicit and explicit methods each have truncation errors of order O(h2 + k). Surprisingly, we can



146 LECTURE 37. IMPLICIT METHODS

do even better if we also require

r =

√
5

10
≈ 0.22361,

and, consequently,

λ =
3−
√

5

6
≈ 0.12732.

With these choices, the method has truncation error of order O(h6), which is absolutely amazing.

To appreciate the implications, suppose that we need to solve a problem with 4 significant digits. If we use
the explicit or implicit method alone then we will need h2 ≈ k ≈ 10−4. If L = 1 and T ≈ 1, then we need
m ≈ 100 and n ≈ 10, 000. Thus we would have a total of 1, 000, 000 grid points, almost all on the interior.
This is a lot.

Next suppose we solve the same problem using the optimal Crank-Nicholson method. We would need
h6 ≈ 10−4 which would require us to take m ≈ 4.64, so we would take m = 5 and have h = 1/5. For k
we need k = (

√
5/10)h2/c. If c = 1, this gives k =

√
5/250 ≈ 0.0089442 so we would need n ≈ 112 to get

T ≈ 1. This gives us a total of 560 interior grid points, or, a factor of 1785 fewer than the explicit or implicit
method alone.

Exercises

37.1 Modify the program myexppmatrix from exercise 36.2 into a function program myimpmatrix that
produces the matrix B in (37.3) for given inputs m and r. Modify your script from exercise 36.2 to
use B−1 for m = 4 and to plot for r ∈ [0, 2]. It should produce a graph similar to that in Figure 37.2
for m = 4. Turn in the programs and the plot.



Lecture 38

Insulated Boundary Conditions

Insulation

In many of the previous sections we have considered fixed boundary conditions, i.e. u(0) = a, u(L) = b. We
implemented these simply by assigning uj0 = a and ujn = b for all j.

We also considered variable boundary conditions, such as u(0, t) = g1(t). For example, we might have
u(0, t) = sin(t) which could represents periodic heating and cooling of the end at x = 0.

A third important type of boundary condition is called the insulated boundary condition. It is so named
because it mimics an insulator at the boundary. Physically, the effect of insulation is that no heat flows
across the boundary. This means that the temperature gradient is zero, which implies that we should require
the mathematical boundary condition u′(L) = 0.

To use it in a program, we must replace u′(L) = 0 by a discrete version. Recall that in our discrete equations
we usually have L = xn. Recall from the section on numerical derivatives, that there are three different ways
to replace a derivative by a difference equation, left, right and central differences. The three of them at xn
would be

u′(xn) ≈ un − un−1
h

≈ un+1 − un
h

≈ un+1 − un−1
2h

.

If xn is the last node of our grid, then it is clear that we cannot use the right or central difference, but are
stuck with the first of these. Setting that expression to zero implies

un = un−1.

This restriction can be easily implemented in a program simply by putting a statement u(n+1)=u(n) inside
the loop that updates values of the profile. However, since this method replaces u′(L) = 0 by an expression
that is only accurate to first order, it is not very accurate and is usually avoided.

Instead we want to use the most accurate version, the central difference. For that we should have

u′(L) = u′(xn) =
un+1 − un−1

2h
= 0.

or simply
un+1 = un−1.

However, un+1 would represent u(xn+1) and xn+1 would be L + h, which is outside the domain. This,
however, is not an obstacle in a program. We can simply extend the grid to one more node, xn+1, and let
un+1 always equal un−1 by copying un−1 into un+1 whenever un−1 changes. The point xn+1 is “fictional”,
but a computer does not know the difference between fiction and reality! This idea is carried out in the
calculations of the next section and illustrated in Figure 38.1.

147



148 LECTURE 38. INSULATED BOUNDARY CONDITIONS

6u

u u u e

u u u e-
set equal

xn−2 xn−1 xn xn+1

Figure 38.1: Illustation of an insulated boundary condition using a fictional point xn+1 with un+1 =
un−1.

A way to think of an insulated boundary that makes sense of the point L+ h is to think of two bars joined
end to end, where you let the second bar be mirror image of the first bar. If you do this, then no heat will
flow across the joint, which is exactly the same effect as insulating.

Another practical way to implement an insulated boundary is to let the grid points straddle the boundary.
For example suppose we want to impose insulated boundary at the left end of a bar, i.e. u′(0) = 0, then you
could let the first two grid points be at x0 = −h/2 and x1 = h/2. Then you can let

u0 = u1.

This will again force the central difference at x = 0 to be 0.

Implementation in a linear equation by elimination

Consider the BVP

uxx = −1 with u(0) = 5 and u′(1) = 0. (38.1)

This represents the steady state temperature of a bar with a uniformly applied heat source, with one end
held at a fixed temperature and the other end insulated.

If we use 4 equally spaced intervals, then

m = 4 and L = 1 ⇒ h =
L

m
=

1

4
,

and

x0 = 0, x1 = .25, x2 = .5, x3 = .75, x4 = 1, and x5 = 1.25.

The point x5 = 1.25 is outside the region and thus fictional. The boundary condition at x0 = 0 is implemented
as

u0 = 5.

For the insulated condition, we will require

u5 = u3.

This makes the central difference for u′(x4) be zero. We can write the differential equation as a difference
equation

ui−1 − 2ui + ui+1

h2
= −1



149

or
ui−1 − 2ui + ui+1 = −0.0625, i = 1, 2, 3, 4.

For i = 1, recalling that u0 = 5, we have

5− 2u1 + u2 = −.0625 or − 2u1 + u2 = −5.0625.

For i = 2 and i = 3 we have

u1 − 2u2 + u3 = −.0625 and u2 − 2u3 + u4 = −.0625.

For i = 4 we have
u3 − 2u4 + u5 = −.0625 .

Note that we now have 5 unknowns in our problem: u1, . . . , u5. However, from the boundary condition
u5 = u3 and so we can eliminate u5 from our i = 4 equation and write

2u3 − 2u4 = −.0625 .

Summarizing, we can put the unknown quantities in a vector u = (u1, u2, u3, u4)′ and write the equations
as a matrix equation Au = b where

A =


−2 1 0 0
1 −2 1 0
0 1 −2 1
0 0 2 −2


and b = (−5.0625,−.0625,−.0625,−.0625)′. Solve this system and plot the results:

u = A\b

u = [5 ; u]

x = 0:.25:1

plot(x,u,’d’)

Then interpolate with a spline.

The exact solution of this BVP is:
U(x) = 5 + x− .5x2.

Use hold on and plot this function on the same graph to compare:

xx = 0:.01:1;

uu = 5 + xx - .5*xx.^2;

hold on

plot(xx ,uu ,’r’)

You should see that our approximate solution is almost perfect!

Insulated boundary conditions in time-dependent problems

To implement the insulated boundary condition in an explicit difference equation with time, we need to copy
values from inside the region to fictional points just outside the region. Note that you cannot copy the value
from inside the region until it has been set during the main loop. See Figure 38.2 for an illustration.



150 LECTURE 38. INSULATED BOUNDARY CONDITIONS

y y y y
y y y y
y y y y
y y y y

6 6 6 6

6 6 6 6

6 6 6 6

�
�
���

�
�
���

�
�
���

�
�
���

�
�
���

�
�
���

�
�
���

�
�
���

�
�
���

@
@

@@I

@
@

@@I

@
@
@@I

@
@

@@I

@
@

@@I

@
@

@@I

@
@
@@I

@
@

@@I

@
@

@@I

@
@

@@I

@
@
@@I

@
@

@@I

@
@

@
@I

A
A
A
A
A
A
A
AK

B
B
B
B
B
B
B
B
B
B
B
BM

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
CCO

tj

tj+1

xm−2 xm−1 xm = L g2

y y y y i
y y y y i
y y y y i
y y y y i

6 6 6 6

6 6 6 6

6 6 6 6

�
�
���

�
�
���

�
�
���

�
�
���

�
�
���

�
�
���

�
�
���

�
�
���

�
�
���

�
�
���

�
�
���

�
�
���

@
@

@@I

@
@

@@I

@
@
@@I

@
@

@@I

@
@

@@I

@
@

@@I

@
@

@@I

@
@
@@I

@
@

@@I

@
@

@@I

@
@

@@I

@
@

@@I

@
@
@@I

@
@

@@I

@
@

@@I

R

R

R

R

tj

tj+1

xm−2 xm−1 xm = L

fictional

Figure 38.2: Illustration of information flow for the explicit method near the right boundary at
x = L. The top figure shows a fixed boundary condition, where um,j is set to be g2(tj). The
bottom figure shows an insulating boundary condition. Now um,j is updated in the same way as
the general ui,j and an additional entry um+1,j is used with its value set by copying um−1,j .



151

An example

The steady state temperature u(r) (given in polar coordinates) of a disk subjected to a radially symmetric
heat load g(r) and cooled by conduction to the rim of the disk and radiation to its environment is determined
by the boundary value problem

∂2u

∂r2
+

1

r

∂u

∂r
= d(u4 − u4b)− g(r) with u(R) = uR and u′(0) = 0. (38.2)

Here ub is the (fixed) background temperature and uR is the (fixed) temperature at the rim of the disk.

The class web site has a program myheatdisk.m that implements these equations for parameter values R = 5,
d = .1, uR = ub = 10 and g(r) = (r − 5)2. Notice that the equations have a singularity (discontinuity) at
r = 0. How does the program avoid this problem? How does the program implement uR = 10 and u′(0) = 0?
Run the program.

Exercises

38.1 Redo the calculations for the BVP (38.1) except do not include the fictional point x5. Instead, let x4
be the last point and impose the insulated boundary by requiring u4 = u3. (Your system of equations
should be 3 × 3.) Compare this solution with the true solution and the better approximation in the
lecture. Illustrate this comparison on a single plot.

38.2 Modify the program myheat.m to have an insulated boundary at x = L (rather than u(L, t) = g2(t)).
You will need to change the domain to: x = 0:h:L+h and change the dimensions of all the other
objects to fit this domain. Run the program with L = 2π, T = 20, c = .5, g1(t) = sin(t) and
f(x) = − sin(x/4). Set m = 20 and experiment with n. Get a plot when the program is stable. Turn
in your program and plots.



Lecture 39

Finite Difference Method for Elliptic PDEs

Examples of Elliptic PDEs

Elliptic PDE’s are equations with second derivatives in space and no time derivative. The most important
examples are Laplace’s equation

∆u = uxx + uyy + uzz = 0

and the Poisson equation
∆u = f(x, y, z).

These equations are used in a large variety of physical situations such as: steady state heat problems, steady
state chemical distributions, electrostatic potentials, elastic deformation and steady state fluid flows.

For the sake of clarity we will only consider the two dimensional problem. A good model problem in this
dimension is the elastic deflection of a membrane. Suppose that a membrane such as a sheet of rubber is
stretched across a rectangular frame. If some of the edges of the frame are bent, or if forces are applied to
the sheet then it will deflect by an amount u(x, y) at each point (x, y). This u will satify the boundary value
problem:

uxx + uyy = f(x, y) for (x, y) in R,

u(x, y) = g(x, y) for (x, y) on ∂R,
(39.1)

where R is the rectangle, ∂R is the edge of the rectangle, f(x, y) is the force density (pressure) applied at
each point and g(x, y) is the deflection at the edge.

The Finite Difference Equations

Suppose the rectangle is described by

R = {a ≤ x ≤ b, c ≤ y ≤ d}.

We will divide R in subrectangles. If we have m subdivisions in the x direction and n subdivisions in the y
direction, then the step size in the x and y directions respectively are

h =
b− a
m

and k =
d− c
n

.

We obtain the finite difference equations for (39.1) by replacing uxx and uyy by their central differences to
obtain

ui+1,j − 2uij + ui−1,j
h2

+
ui,j+1 − 2uij + ui,j−1

k2
= f(xi, yj) = fij (39.2)

152



153

x x x x x
x x | x x
x | | | x
x x | x x
x x x x x

tj−1

tj

tj+1

xi−1 xi xi+1

Figure 39.1: The finite difference equation relates five neighboring values in a + pattern.

for 1 ≤ i ≤ m − 1 and 1 ≤ j ≤ n − 1. See Figure 39.1 for an illustration. The boundary conditions are
introduced by

u0,j = g(a, yj), um,j = g(b, yj), ui,0 = g(xi, c), and ui,n = g(xi, d). (39.3)

Direct Solution of the Equations

Notice that since the edge values are prescribed, there are (m − 1) × (n − 1) grid points where we need to
determine the solution. Note also that there are exactly (m−1)× (n−1) equations in (39.2). Finally, notice
that the equations are all linear. Thus we could solve the equations exactly using matrix methods. To do
this we would first need to express the uij ’s as a vector, rather then a matrix. To do this there is a standard
procedure: let u be the column vector we get by placing one column after another from the columns of (uij).
Thus we would list u:,1 first then u:,2, etc.. Next we would need to write the matrix A that contains the
coefficients of the equations (39.2) and incorporate the boundary conditions in a vector b. Then we could
solve an equation of the form

Au = b. (39.4)

Setting up and solving this equation is called the direct method.

An advantage of the direct method is that solving (39.4) can be done relatively quickly and accurately. The
drawback of the direct method is that one must set up u, A and b, which is confusing. Further, the matrix
A has dimensions (m− 1)(n− 1)× (m− 1)(n− 1), which can be rather large. Although A is large, many of
its elements are zero. Such a matrix is called sparse and there are special methods intended for efficiently
working with sparse matrices.



154 LECTURE 39. FINITE DIFFERENCE METHOD FOR ELLIPTIC PDES

Iterative Solution

A usually preferred alternative to the direct method described above is to solve the finite difference equations
iteratively. To do this, first solve (39.2) for uij , which yields

uij =
1

2(h2 + k2)

(
k2(ui+1,j + ui−1,j) + h2(ui,j+1 + ui,j−1)− h2k2fij

)
. (39.5)

This method is another example of a relaxation method. Using this formula, along with (39.3), we can update
uij from its neighbors, just as we did in the relaxation method for the nonlinear boundary value problem.
If this method converges, then the result is an approximate solution.

The iterative solution is implemented in the script program mypoisson.m on the class web site. Download
and read it. You will notice that maxit is set to 0. Thus the program will not do any iteration, but will plot
the initial guess. The initial guess in this case consists of the proper boundary values at the edges, and zero
everywhere in the interior. To see the solution evolve, gradually increase maxit.

Exercises

39.1 Modify the program mypoisson.m (from the class web page) in the following ways:

• Change x = b to be an insulated boundary, i.e. ux(b, y) = 0.

• Change the force f(x, y) to a negative constant −p.

Experiment with various values of p and maxit. Obtain plots for small and large p. Tell how many
iterations are needed for convergence in each. For large p plot also a couple of intermediate steps.



Lecture 40

Convection-Diffusion Equations*

Exercises

40.1

155



Lecture 41

Finite Elements

Triangulating a Region

A disadvantage of finite difference methods is that they require a very regular grid, and thus a very regular
region, either rectangular or a regular part of a rectangle. Finite elements is a method that works for any
shape region because it is not built on a grid, but on triangulation of the region, i.e. cutting the region up
into triangles as we did in a previous lecture. The following figure shows a triangularization of a region.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x

y

Figure 41.1: An annular region with a triangulation. Notice that the nodes and triangles are very
evenly spaced.

This figure was produced by the script program mywasher.m. Notice that the nodes are evenly distributed.
This is good for the finite element process where we will use it.

Open the program mywasher.m. This program defines a triangulation by defining the vertices in a matrix V

in which each row contains the x and y coordinates of a vertex. Notice that we list the interior nodes first,

156



157

t

D
D
D
D
D
D
D
D�

�
�
�
�
�
�
�

t

B
B
B
B
B
B
B
B�

�
�
�
�
�
�
�

t

A
A
A
A
A
A
A
A�

�
�
�
�
�
�
�

t

A
A
A
A
A
A
A
A�

�
�
�
�
�
�
�

t

B
B
B
B
B
B
B
B�

�
�
�
�
�
�
�

t
Figure 41.2: The finite elements for the “triangulation” of a one dimensional object.

then the boundary nodes.

Triangles are defined in the matrix T. Each row of T has three integer numbers indicating the indices of the
nodes that form a triangle. For instance the first row is 43 42 25, so T1 is the triangle with vertices v43,
v42 and v25. The matrix T in this case was produced by the Matlab command delaunay. The command
produced more triangles than desire and the unwanted ones were deleted.

A three dimensional plot of the region and triangles is produced by having the last line be trimesh(T,x,y,z).

What is a finite element?

The finite element method is a mathematically complicated process. However, a finite element is actually
a very simple object. To each node vj we associate a function Φj that has the properties Φj(vj) = 1 and
Φj(vi) = 0 for i 6= j. Between nodes, Φj is a linear function. This function is the finite element. (There are
fancier types of finite elements that we will not discuss.)

If we consider one dimension, then a triangulation is just a subdivision into subintervals. In Figure 41.2 we
show an uneven subdivision of an interval and the finite elements corresponding to each node.

In two dimensions, Φj is composed of triangular piece of planes. Thus Φj is a function whose graph is a
pyramid with its peak over node vj .

What is a finite element solution?

A finite element (approximate) solution is a linear combination of the elements:

U(x) =

n∑
j=1

CjΦj(x). (41.1)

Thus finding a finite element solution amounts to finding the best values for the constants {Cj}nj=1.

In the program mywasher.m, the vector z contains the node values Cj . These values give the height at each
node in the graph. For instance if we set all equal to 0 except one equal to 1, then the function is a finite
element. Do this for one boundary node, then for one interior node.

Notice that a sum of linear functions is a linear function. Thus the solution using linear elements is a



158 LECTURE 41. FINITE ELEMENTS

piecewise linear function. Also notice that if we denote the j-th vertex by vj , then

U(vj) = Cj . (41.2)

Thus we see that the constants Cj are just the values at the nodes.

Take the one-dimensional case. Since we know that the solution is linear on each subinterval, knowing the
values at the endpoints of the subintervals, i.e. the nodes, gives us complete knowledge of the solution.
Figure 41.3 could be a finite element solution since it is piecewise linear.

t���
�
�
�
�
�

t

@
@
@

t

�
�
�
�

t t

A
A
A
A
AA

t
Figure 41.3: A possible finite element solution for a one dimensional object. Values are assigned at
each node and a linear interpolant is used in between.

In the two-dimensional case, the solution is linear on each triangle, and so again, if we know the values
{Cj}nj=1 at the nodes then we know everything.

Experiment with finite elements

By changing the values in z in the program we can produce different three dimensional shapes based on the
triangles. The point then of a finite element solution is to find the values at the nodes that best approximate
the true solution. This task can be subdivided into two parts: (1) assigning the values at the boundary
nodes and (2) assigning the values at the interior nodes.

Values at boundary nodes

Once a triangulation and a set of finite elements is set up, the next step is to incorporate the boundary
conditions of the problem. Suppose that we have fixed boundary conditions, i.e. of the form

u(x) = g(x) for x ∈ ∂D,

where D is the object (domain) and ∂D is its boundary. Then the boundary condition directly determines
the values on the boundary nodes.

In particular, suppose that v` is a boundary node. Since Φ`(v`) = 1 and all the other elements are zero at
node v`, then to make

U(v`) =

n∑
j=1

CjΦj(v`) = g(v`),



159

we must choose
C` = g(v`).

Thus the constants Cj for the boundary nodes are set at exactly the value of the boundary
condition at the nodes.

Thus, if there are m interior nodes, then

Cj = g(vj), for all m+ 1 ≤ j ≤ n.

In the program mywasher the first 32 vertices correspond to interior nodes and the last 32 correspond to
boundary nodes. By setting the last 32 values of z, we achieve the boundary conditions. We could do this
by adding the following commands to the program:

z(33:64) = .5;

or more elaborately we might use functions:

z(33:48) = x(33:48).^2 - .5*y(33:48).^2;

z(49:64) = .2*cos(y(49:64));

Exercises

41.1 Generate an interesting or useful 2-d object and a well-distributed triangulation of it.

• Plot the region.

• Plot one interior finite element.

• Plot one boundary finite element.

• Assign values to the boundary using a function (or functions) and plot the region with the
boundary values.

Turn in your code and the four plots.



Lecture 42

Determining Internal Node Values

As seen in the previous section, a finite element solution of a boundary value problem boils down to finding
the best values of the constants {Cj}nj=1, which are the values of the solution at the nodes. The interior
nodes values are determined by variational principles. Variational principles usually amount to minimizing
internal energy. It is a physical principle that systems seek to be in a state of minimal energy and this
principle is used to find the internal node values.

Variational Principles

For the differential equations that describe many physical systems, the internal energy of the system is an
integral. For instance, for the steady state heat equation

uxx(x, y) + uyy(x, y) = g(x, y) (42.1)

the internal energy is the integral

I[u] =

∫∫
R

u2x(x, y) + u2y(x, y) + 2g(x, y)u(x, y) dA, (42.2)

where R is the region on which we are working. It can be shown that u(x, u) is a solution of (42.1) if and
only if it is minimizer of I[u] in (42.2).

The finite element solution

Recall that a finite element solution is a linear combination of finite element functions:

U(x, y) =

n∑
j=1

CjΦj(x, y),

where n is the number of nodes. To obtain the values at the internal nodes, we will plug U(x, y) into the
energy integral and minimize. That is, we find the minimum of

I[U ]

for all choices of {Cj}mj=1, where m is the number of internal nodes. In this as with any other minimization
problem, the way to find a possible minimum is to differentiate the quantity with respect to the variables

160



161

and set the results to zero. In this case the free variables are {Cj}mj=1. Thus to find the minimizer we should
try to solve

∂I[U ]

∂Cj
= 0 for 1 ≤ j ≤ m. (42.3)

We call this set of equations the internal node equations. At this point we should ask whether the internal
node equations can be solved, and if so, is the solution actually a minimizer (and not a maximizer). The
following two facts answer these questions. These facts make the finite element method practical:

• For most applications the internal node equations are linear.

• For most applications the internal node equations give a minimizer.

We can demonstrate the first fact using an example.

Application to the steady state heat equation

If we plug the candidate finite element solution U(x, y) into the energy integral for the heat equation (42.2),
we obtain

I[U ] =

∫∫
R

Ux(x, y)2 + Uy(x, y)2 + 2g(x, y)U(x, y) dA. (42.4)

Differentiating with respect to Cj we obtain the internal node equations

0 =

∫∫
R

2Ux
∂Ux
∂Cj

+ 2Uy
∂Uy
∂Cj

+ 2g(x, y)
∂U

∂Cj
dA for 1 ≤ j ≤ m. (42.5)

Now we have several simplifications. First note that since

U(x, y) =

n∑
j=1

CjΦj(x, y),

we have
∂U

∂Cj
= Φj(x, y) .

Also note that

Ux(x, y) =

n∑
j=1

Cj
∂

∂x
Φj(x, y),

and so
∂Ux
∂Cj

= (Φj)x.

Similarly,
∂Uy

∂Cj
= (Φj)y. The integral (42.5) then becomes

0 = 2

∫∫
Ux(Φj)x + Uy(Φj)y + g(x, y)Φj(x, y) dA for 1 ≤ j ≤ m.



162 LECTURE 42. DETERMINING INTERNAL NODE VALUES

Next we use the fact that the region R is subdivided into triangles {Ti}pi=1 and the functions in question
have different definitions on each triangle. The integral then is a sum of the integrals:

0 = 2

p∑
i=1

∫∫
Ti

Ux(Φj)x + Uy(Φj)y + g(x, y)Φj(x, y) dA for 1 ≤ j ≤ m.

Now note that the function Φj(x, y) is linear on triangle Ti and so

Φij(x, y) = Φj |Ti
(x, y) = aij + bijx+ cijy.

This gives us the simplifications

(Φij)x(x, y) = bij and (Φij)y(x, y) = cij .

Also, Ux and Uy restricted to Ti have the form

Ux =

n∑
k=1

Ckbik and Uy =

n∑
k=1

Ckcik.

The internal node equations then reduce to

0 =

p∑
i=1

∫∫
Ti

(
n∑
k=1

Ckbik

)
bij +

(
n∑
k=1

Ckcik

)
cij + g(x, y)Φij(x, y) dA for 1 ≤ j ≤ m.

Now notice that (
∑n
k=1 Ckbik) bij is just a constant on Ti, and, thus, we have

∫∫
Ti

(
n∑
k=1

Ckbik

)
bij +

(
n∑
k=1

Ckcik

)
cij =

[(
n∑
k=1

Ckbik

)
bij +

(
n∑
k=1

Ckcik

)
cij

]
Ai,

where Ai is just the area of Ti. Finally, we apply the Three Corners rule to make an approximation to the
integral ∫∫

Ti

g(x, y)Φij(x, y) dA .

Since Φij(xk, yk) = 0 if k 6= j and even Φij(xj , yj) = 0 if Ti does not have a corner at (xj , yj), we get the
approximation

Φij(xj , yj)g(xj , yj)Ai/3.

If Ti does have a corner at (xj , yj) then Φij(xj , yj) = 1.

Summarizing, the internal node equations are

0 =

p∑
i=1

[(
n∑
k=1

Ckbik

)
bij +

(
n∑
k=1

Ckcik

)
cij +

1

3
g(xj , yj)Φij(xj , yj)

]
Ai for 1 ≤ j ≤ m.

While not pretty, these equations are in fact linear in the unknowns {Cj}.



163

Experiment

Download the program myfiniteelem.m from the class web site. This program produces a finite element
solution for the steady state heat equation without source term:

uxx + uyy = 0 .

To use it, you first need to set up the region and boundary values by running a script such as mywasher or
mywedge. Try different settings for the boundary values z. You will see that the program works no matter
what you choose.

Exercises

42.1 Study for the final!



Review of Part IV

Methods and Formulas

Initial Value Problems

Reduction to First order system:

For an n-th order equation that can be solved for the n-th derivative

x(n) = f

(
t, x, ẋ, ẍ, . . . ,

dn−1x

dtn−1

)
(42.6)

use the standard change of variables:

y1 = x

y2 = ẋ

...

yn = x(n−1) =
dn−1x

dtn−1
.

(42.7)

Differentiating results in a first-order system:

ẏ1 = ẋ = y2

ẏ2 = ẍ = y3

...

ẏn = x(n) = f(t, y1, y2, . . . , yn).

(42.8)

Euler’s method:

yi+1 = yi + hf(ti,yi).

Modified (or Improved) Euler method:

k1 = hf(ti,yi)

k2 = hf(ti + h,yi + k1)

yi+1 = yi +
1

2
(k1 + k2)

164



165

Boundary Value Probems

Finite Differences:

Replace the Differential Equation by Difference Equations on a grid.
Review the lecture on Numerical Differentiation.

Explicit Method Finite Differences for Parabolic PDE (heat):

ut 7→
ui,j+1 − uij

k
and uxx 7→

ui−1,j − 2uij + ui+1,j

h2
(42.9)

leads to
ui,j+1 = rui−1,j + (1− 2r)ui,j + rui+1,j ,

where h = L/m, k = T/n, and r = ck/h2. The stability condition is r < 1/2.

Implicit Method Finite Differences for Parabolic PDE (heat):

ut 7→
ui,j+1 − uij

k
and uxx 7→

ui+1,j+1 − 2ui,j+1 + ui−1,j+1

h2
(42.10)

leads to
ui,j = −rui−1,j+1 + (1 + 2r)ui,j+1 − rui+1,j+1,

which is always stable and has truncation error O(h2 + k).

Crank-Nicholson Method Finite Differences for Parabolic PDE (heat):

−rui−1,j+1 + 2(1 + r)ui,j+1 − rui+1,j+1 = rui−1,j + 2(1− r)ui,j + rui+1,j ,

which is always stable and has truncation error O(h2 + k2).

Finite Difference Method for Elliptic PDEs:

uxx + uyy = f(x, y) 7→ ui+1,j − 2uij + ui−1,j
h2

+
ui,j+1 − 2uij + ui,j−1

k2
= f(xi, yj) = fij ,

Finite Elements:

Based on triangles instead of rectangles.
Can be used for irregularly shaped objects.
An element: Pyramid shaped function at a node.
A finite element solution is a linear combination of finite element functions:

U(x, y) =

n∑
j=1

CjΦj(x, y),



166 REVIEW OF PART IV

where n is the number of nodes, and where U is an approximation of the true solution.
Cj is the value of the solution at node j.
Cj at the boundary nodes are given by boundary conditions.
Cj at interior nodes are determined by variation principles.
The last step in determining Cj ’s is solving a linear system of equations.

Matlab

Initial value problem solver that uses the Runge-Kutta 45 method, which has error O(h5) . The input y0 is
the initial vector and tspan is the time span. You can either make f a vector valued anonymous function
and do

df = @(t,y)[-y(2);y(1)]

[T Y ] = ode45(dy,tspan ,y0)

or make a function program that outputs a vector

function dy = myf(t,y)

dy = [-y(2);y(1)];

end

and then do

[T Y ] = ode45(@myf ,tspan ,y0)

The program ode45 and other Matlab IVP solvers use adaptive step size to achieve a desired local and
global accuracy, with a default of tol = 10−6 for the global error.

The chief benefit of higher order methods and variable step size is that they allow a program to take only
as few steps as necessary.


